Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.

نویسندگان

  • R L Gonzalez
  • I Tinoco
چکیده

Identification and characterization of a metal ion binding site in an RNA pseudoknot was accomplished using cobalt (III) hexammine, Co(NH3)63+, as a probe for magnesium (II) hexahydrate, Mg(H2O)62+, in nuclear magnetic resonance (NMR) structural studies. The pseudoknot causes efficient -1 ribosomal frameshifting in mouse mammary tumor virus. Divalent metal ions, such as Mg2+, are critical for RNA structure and function; Mg2+preferentially stabilizes the pseudoknot relative to its constituent hairpins. The use of Co(NH3)63+as a substitute for Mg2+was investigated by ultraviolet absorbance melting curves, NMR titrations of the imino protons, and analysis of NMR spectra in the presence of Mg2+or Co (NH3)63+. The structure of the pseudoknot-Co(NH3)63+complex reveals an ion-binding pocket formed by a short, two-nucleotide loop and the major groove of a stem. Co(NH3)63+stabilizes the sharp loop-to-stem turn and reduces the electrostatic repulsion of the phosphates in three proximal strands. Hydrogen bonds are identified between the Co(NH3)63+protons and non-bridging phosphate oxygen atoms, 2' hydroxyl groups, and nitrogen and oxygen acceptors on the bases. The binding site is significantly different from that previously characterized in the major groove surface of tandem G.U base-pairs, but is similar to those observed in crystal structures of a fragment of the 5 S rRNA and the P5c helix of the Tetrahymena thermophila group I intron. Changes in chemical shifts occurred at the same pseudoknot protons on addition of Mg2+as on addition of Co(NH3)63+, indicating that both ions bind at the same site. Ion binding dissociation constants of approximately 0.6 mM and 5 mM (in 200 mM Na+and a temperature of 15 degrees C) were obtained for Co(NH3)63+and Mg2+, respectively, from the change in chemical shift as a function of metal ion concentration. An extensive array of non-sequence-specific hydrogen bond acceptors coupled with conserved structural elements within the binding pocket suggest a general mode of divalent metal ion stabilization of this type of frameshifter pseudoknot. These results provide new thermodynamic and structural insights into the role divalent metal ions play in stabilizing RNA tertiary structural motifs such as pseudoknots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low specificity of metal ion binding in the metal ion core of a folded RNA.

The structure and activity of nucleic acids depend on their interactions with metal ions. Fundamental to these interactions is the degree of specificity observed between the metal ions and nucleic acids, and a complete description of nucleic acid folding requires that we understand the nature of the interactions with metal ions, including specificity. The prior demonstration that high concentra...

متن کامل

Metal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure

The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...

متن کامل

Characterization of the metal ion binding site in the anti-terminator protein, HutP, of Bacillus subtilis

HutP is an RNA-binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis, by binding to cis-acting regulatory sequences on hut mRNA. It requires L-histidine and an Mg2+ ion for binding to the specific sequence within the hut mRNA. In the present study, we show that several divalent cations can mediate the HutP-RNA interactions. The best divalen...

متن کامل

Metal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure

The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...

متن کامل

Determining the Mg2+ stoichiometry for folding an RNA metal ion core.

The folding and catalytic function of RNA molecules depend on their interactions with divalent metal ions, such as magnesium. As with every molecular process, the most basic knowledge required for understanding the close relationship of an RNA with its metal ions is the stoichiometry of the interaction. Unfortunately, inventories of the numbers of divalent ions associated with unfolded and fold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 289 5  شماره 

صفحات  -

تاریخ انتشار 1999